本文整理了 GitHub 上最流行的 57 款深度学习项目。下面stars数据于2017年01月02日更新。
1.TensorFlow
Stars:41008
网址:https://github.com/tensorflow/tensorflow
使用数据流图计算可扩展机器学习问题
TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。
TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的自动分 化(auto-differentiation)。通过灵活的 Python 接口,要在 TensorFlow 中表达想法也会很容易。
2.Caffe
Stars:14949
网址:https://github.com/BVLC/caffe
Caffe是一个高效的开源深度学习框架。由表达式,速度和模块化组成。
3.Neural style
Stars:10244
网址:https://github.com/jcjohnson/neural-style
Torch实现的神经网络算法。
Neural style 是让机器模仿已有画作的绘画风格来把一张图片重新绘制的算法。
4.deepdream
Stars:9654
网址:https://github.com/google/deepdream
Deep Dream,一款图像识别工具
5.Keras
Stars:10706
网址:https://github.com/fchollet/keras
一款Python实现的深度学习库,包括卷积神经网络、递归神经网络等。运行在Theano和TensorFlow之上。
Keras是一个极简的、高度模块化的神经网络库,采用Python(Python 2.7-3.5.)开发,能够运行在TensorFlow和Theano任一平台,好项目旨在完成深度学习的快速开发。
6.RocAlphaGo
Stars:7601
网址:https://github.com/Rochester-NRT/RocAlphaGo
学生主导的一个独立项目,从新实现了 DeepMind在2016 Nature发表的内容, 《用深度神经网络和树搜索学习围棋》 (Nature 529, 484-489, 28 Jan 2016).
7.TensorFlow Models
Stars:10353
网址:https://github.com/tensorflow/models
基于TensorFlow开发的模型
8.Neural Doodle
Stars:7230
网址:https://github.com/alexjc/neural-doodle
运用深度神经网络将涂鸦变为优雅的艺术品,从照片生成无缝纹理,转变图片风格,进行基于实例的提升,等等…还有更多!(语义风格传递的实现)
9.CNTK
Stars:9057
网址:https://github.com/Microsoft/CNTK
深度学习工具包 。来自微软公司的CNTK工具包的效率,“比我们所见过的都要疯狂”。 这部分归功于CNTK可借助图形处理单元(GPU)的能力,微软自称是唯一公开“可扩展GPU”功能的公司。(从单机上的1个、延伸至超算上的多个) 在与该公司的网络化GPU系统(称之为Azure GPU Lab)匹配之后,它将能够训练深度神经网络来识别语音,让Cortana虚拟助理的速度达到以前的十倍。
10.TensorFlow Examples
Stars:7954
网址:https://github.com/aymericdamien/TensorFlow-Examples
适合初学者的 TensorFlow 教程和代码示例,做了相关笔记和代码解释。
11.ConvNet JS
Stars:6095
网址:https://github.com/karpathy/convnetjs
ConvNetJS 是用 JavaScript 实现的神经网络,同时还有基于浏览器的 demo。
12.Torch
Stars:6104
网址:https://github.com/torch/torch7
Torch7,深度学习库。
Torch7 是一个科学计算框架,支持机器学习算法。易用而且提供高效的算法实现,得益于 LuaJIT 和一个底层的 C 实现。
13.OpenFace
Stars:6008
网址:https://github.com/cmusatyalab/openface
基于深度学习网络的面部识别。
14.MXNet
Stars:7358
网址:https://github.com/dmlc/mxnet
轻巧、便携、灵活的分布式/移动深度学习框架,支持Python, R, Julia, Scala, Go, Javascript等等语言。
MXNet是一款设计为效率和灵活性的深度学习框架。它允许你混合符号编程和命令式编程,从而最大限度提高效率和生产力。在其核心是一个动态的依赖调度,它能够自动并行符号和命令的操作。一个图形优化层,使得符号执行速度快,内存使用高效。这个库便携,轻量,而且能够扩展到多个GPU和多台机器。
15.Theano
Stars:5348
网址:https://github.com/Theano/Theano
Theano 是一个 Python 库,用来定义、优化和模拟数学表达式计算,用于高效的解决多维数组的计算问题。
16.Leaf
Stars:4561
网址:https://github.com/autumnai/leaf
黑客的开源机器智能框架。
17.Char RNN
Stars:4618
网址:https://github.com/karpathy/char-rnn
多层递归神经网络的字符级别语言模型,基于Torch开发。
18.Neural Talk
Stars:3932
网址:https://github.com/karpathy/neuraltalk
NeuralTalk是一个Python+numpy项目,用多模式递归神经网络描述图像。
19.deeplearning4j
Stars:5044
网址:https://github.com/deeplearning4j/deeplearning4j
基于Hadoop 和 Spark的Java, Scala & Clojure深度学习工具。
Deeplearning4j(简称DL4J)是为Java和Scala编写的首个商业级开源分布式深度学习库。DL4J与Hadoop和Spark集成,为商业环境(而非研究工具目的)所设计。Skymind是DL4J的商业支持机构。
Deeplearning4j 技术先进,以即插即用为目标,通过更多预设的使用,避免太多配置,让非研究人员也能够进行快速的原型制作。DL4J同时可以规模化定制。DL4J遵循Apache 2.0许可协议,一切以其为基础的衍生作品均属于衍生作品的作者。
20.TFLearn
Stars:4469
网址:https://github.com/tflearn/tflearn
深度学习库,包括高层次的TensorFlow接口。
21.TensorFlow Playground
Stars:4040
网址:https://github.com/tensorflow/playground
神经网络模型示例。
22.OpenAI Gym
Stars:4488
网址:https://github.com/openai/gym
一种用于开发和比较强化学习算法的工具包。
23.Magenta
Stars:4180
网址:https://github.com/tensorflow/magenta
Magenta: 音乐和艺术的生成与机器智能
Google Brain团队的一组研究人员发布了一个项目Project Magenta,其主要目标是利用机器学习创作艺术和谱写曲子。Project Magenta使用了 TensorFlow系统,研究人员在GitHub上开源了他们的模型和工具。
研究人员称,机器生成的音乐已经存在了许多年,但它们在都缺乏长的叙事艺术。Project Magenta就试图将故事作为机器生成音乐的重要部分。Google公布了一个DEMO(MP3)表现Magenta项目的成果。
24.Colornet
Stars:2931
网址:https://github.com/pavelgonchar/colornet
用神经网络模型给灰度图上色。
25.Synaptic
Stars:3357
网址:https://github.com/cazala/synaptic
基于node.js和浏览器的免架构神经网络库。
26.Neural Talk 2
Stars:2972
网址:https://github.com/karpathy/neuraltalk2
Torch开发的图像简介生成代码,运行在GPU上。
27.Image Analogies
Stars:2725
网址:https://github.com/awentzonline/image-analogies
使用神经匹配和融合生成相似图形。
28.TensorFlow Tutorials
Stars:2937
网址:https://github.com/pkmital/tensorflow_tutorials
Tensorflow,从基础原理到应用。
29.Lasagne
Stars:2747
网址:https://github.com/Lasagne/Lasagne
基于Theano训练和构建神经网络的轻型函数库。
30.PyLearn2
Stars:2293
网址:https://github.com/lisa-lab/pylearn2
基于Theano的机器学习库。
31.LISA-lab Deep Learning Tutorials
Stars:2488
网址:https://github.com/lisa-lab/DeepLearningTutorials
深度学习教程笔记和代码。详情参见wiki页面。
32.Neon
Stars:2624
网址:https://github.com/NervanaSystems/neon
Nervana?开发的一款快速、可扩展、易上手的Python深度学习框架.
neon 是 Nervana System 的深度学习软件。根据Facebook一位研究者的基准测试,Nervana的软件比业界知名的深度学习工具性能都要高,包括Facebook自己的Torch7和Nvidia的cuDNN。
33.Matlab Deep Learning Toolbox
Stars:2228
网址:https://github.com/rasmusbergpalm/DeepLearnToolbox
Matlab/Octave的深度学习工具箱。包括深度信念网络、自动编码机、卷积神经网络、卷积自动编码机和vanilla神经网络等。每种方法都有入门示例。
34.Deep Learning Flappy Bird
Stars:2100
网址:https://github.com/yenchenlin1994/DeepLearningFlappyBird
使用深度强化学习破解Flappy Bird游戏(深度 Q-学习).
35.dl-setup
Stars:1722
网址:https://github.com/saiprashanths/dl-setup
在深度学习机上设置软件说明。
36.Chainer
Stars:1928
网址:https://github.com/pfnet/chainer
一款灵活的深度学习神经网络框架。
Chainer是深度学习的框架,Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。
37.Neural Story Teller
Stars:1725
网址:https://github.com/ryankiros/neural-storyteller
看图讲故事的递归神经网络模型。
38.DIGITS
Stars:1761
网址:https://github.com/NVIDIA/DIGITS
深度学习GPU训练系统。
39.Deep Jazz
Stars:1371
网址:https://github.com/jisungk/deepjazz
基于Keras和Theano生成jazz的深度学习模型!
40.Tiny DNN
Stars:2302
网址:https://github.com/tiny-dnn/tiny-dnn
仅引用头文件,无依赖且使用 C ++ 11 的深度学习框架
41.Brainstorm
Stars:1225
网址:https://github.com/IDSIA/brainstorm
快速、灵活、有趣的神经网络。
42.dl-docker
Stars:1318
网址:https://github.com/saiprashanths/dl-docker
一个用于深度学习的一体化 Docker 镜像。 包含所有流行的 DL 框架(TensorFlow,Theano,Torch,Caffe等)。
43.Darknet
Stars:1533
网址:https://github.com/pjreddie/darknet
C语言版本的开源神经网络。
44.Theano Tutorials
Stars:1041
网址:https://github.com/Newmu/Theano-Tutorials
基于Theano的机器学习入门教程,从线性回归到卷积神经网络。
45.RNN Music Composition
Stars:1092
网址:https://github.com/hexahedria/biaxial-rnn-music-composition
一款生成古典音乐的递归神经网络工具。
46.Blocks
Stars:976
网址:https://github.com/mila-udem/blocks
用于构建和训练神经网络模型的Theano框架
47.TDB
Stars:1090
网址:https://github.com/ericjang/tdb
TensorFlow的交互式、节点调试和可视化的工具。
TensorDebugger (TDB) 是深度学习调试器,使用断点和计算机图形化实时数据流可视化扩展 TensorFlow(谷歌的深度学习框架)。特别的是,TDB 是一个 Python 库和 一个 Jupyter Notebook 扩展的结合,构建 Google 的 TensorFlow 框架。
48.Scikit Neural Net
Stars:974
网址:https://github.com/aigamedev/scikit-neuralnetwork
深度神经网络入门工具,类似scikit-learn的分类器和回归模型。
49.Veles
Stars:792
网址:https://github.com/samsung/veles
分布式机器学习平台(Python, CUDA, OpenCL)
VELES 是分布式深度学习应用系统,用户只需要提供参数,剩下的都可以交给 VELES。VELES 使用 Python 编写,使用 OpenCL 或者 CUDA,利用基于 Flow 的编程。它是三星开发的另一个 TensorFlow。
50.Deep Detect
Stars:915
网址:https://github.com/beniz/deepdetect
基于C++11的深度学习接口和服务器,与Python绑定并支持Caffe。
51.TensorFlow DeepQ
Stars:918
网址:https://github.com/nivwusquorum/tensorflow-deepq
基于Google Tensorflow的深度Q学习演示。
52.Caffe on Spark
Stars:985
网址:https://github.com/yahoo/CaffeOnSpark
基于Spark的Caffe。
雅虎认为,深度学习应该与现有的支持特征工程和传统(非深度)机器学习的数据处理管道在同一个集群中,创建CaffeOnSpark意在使得深度学习训练和测试能被嵌入到Spark应用程序中。CaffeOnSpark被设计成为一个Spark深度学习包。
53.Nolearn
Stars:754
网址:https://github.com/dnouri/nolearn
神经网络库的抽象,著名的Lasagne。
54.DCGAN TensorFlow
Stars:1057
网址:https://github.com/carpedm20/DCGAN-tensorflow
基于tensorflow实现的深度卷积生成对抗网络。
55.MatConvNet
Stars:610
网址:https://github.com/vlfeat/matconvnet
MATLAB CNN 计算机视觉应用工具箱。
56.DeepCL
Stars:478
网址:https://github.com/hughperkins/DeepCL
用于训练深度卷积神经网络模型的OpenCL库。
57.Visual Search Server
Stars:383
网址:https://github.com/AKSHAYUBHAT/VisualSearchServer
可视化搜索服务器。一个简单使用TensorFlow,InceptionV3模型和AWS GPU实例实现的视觉搜索服务器。
代码实现两个方法,一个处理图像搜索的服务器和一个提取pool3功能的简单索引器。 最近邻搜索可以使用近似(更快)或使用精确方法(更慢)以近似方式执行。
转载请注明来自石家庄天鲲化工设备有限公司 ,本文标题:《盘点GitHub上57款最流行的开源深度学习项目》
还没有评论,来说两句吧...